INVESTIGATION OF LOWER SPINE COMPRESSION FRACTURES IN FRONTAL CRASHES

Rodney W. Rudd, National Highway Traffic Safety Administration

Overview

- Lower spine includes:
 - 10th through 12th thoracic vertebrae
 - 1st through 5th lumbar vertebrae
- Focus is on planar frontal crashes
 - Crashes without major vertical loading to undercarriage
 - No rollovers
- Trends in data
- Development of research
- Current research

Observations in Field Crashes

- Crash Injury Research and Engineering Network (CIREN) as sentinel
 - More frequent observation of lumbar and lower thoracic fractures
 - Frontal crashes (planar)
 - Newer vehicles
 - Belted occupants
 - More compressive in nature

- Catalyst role of CIREN spawned a research project

Field Incidence – Nationally-Representative Crash Data

• NASS-CDS

Pintar, et al. [2012]

- Looked at specific injury codes (AIS) for vertebral body fractures T10-L5
- Identified trend of increasing incidence with newer model year vehicles in frontal crashes compared to other crash modes
- Updated analysis in 2014
 - Model year trend continued with additional data years
 - Exemplar odds ratios:
 - Object struck
 - Object vs. other vehicle4.51 (4.35, 4.60)
 - Restraint
 - Belted vs. unbelted2.06 (1.96, 2.16)

Pintar, F.A., *et al.* (2012) "Thoracolumbar Spine Fractures in Frontal Impact Crashes" Annals of Advances in Automotive Medicine, vol. 56, pp. 277-283.

SAE INTERNATIONAL

Field Incidence – Nationally-Representative Trauma Data

- Doud, et al. [2015] reviewed multiple trauma databases
 - Trauma databases
 - National Trauma Databank® (NTDB®) 2002-2006
 - National Inpatient Sample 1998-2007
 - Crash database
 - NASS-CDS 2000-2011
 - All three databases showed increases in crash-related thoracolumbar spine injuries despite decreasing rates of crash-related injuries overall – 8-10% per year
 - More sensitive screening tools likely not the main driver of increased incidence
 - No consistent compensatory decreasing trends in sacropelvic injuries (trade-off)

Doud, A.N., *et al.* (2015) "Has the Incidence of Thoracolumbar Spine Injuries Increased in the United States From 1998-2011?" Clinical Orthopaedics and Related Research, v. 473, no. 1.

Motivation

- Incidence is low, but increasing
 - What are the mechanisms?
 - Are these trade-off injuries?
 - Are vehicle design changes responsible?
- Hypothesized mechanisms under consideration
 - Combination of lap belt and seat bottom interacting with pelvis
 - Straightening of lower spine curvature
 - Downward motion into seat structure

Research Approach – Identify Relevant Factors

In-Depth Review of CIREN Cases

- In-depth case review to better understand variables and factors
 - Model year 2000 and newer
 - Row 1 occupants 16 years or older
 - Frontal impacts, primarily x-axis loading, no rollovers
- 82 case occupants with 102 spinal fractures
 - 96.3% belted
 - 58% female
 - L1 most common vertebra
 - Minor compression and burst fractures most common

In-Depth Review of CIREN Cases - Example

- 45 yo female driver
 - Belted
 - SW bag deployed
- 2001 Nissan Sentra
 - 12FDEW2, 41 km/h
 - V2: 1994 Camry
- L1 burst fracture
 - AIS 3
 - Unstable
 - Retropulsion of fragments
- Only other injury was T12 spinous process fracture

SAE INTERNATIONAL

In-Depth Review of CIREN Cases - Example

- 57 yo male driver
 - Belted
 - SW bag deployed
- 2004 Toyota Tacoma
 - 12FCEN3, 45 km/h BES
 - Struck utility pole
- L5 minor comp fracture
 - AIS 2
 - Retropulsion of fragments

• Also sustained thoracic and belowknee lower extremity fractures

In-Depth Review of CIREN Cases

- Examined crash, vehicle, restraint, and occupant-related factors
- For example, of 64 cases with BES \leq 56 km/h:
 - 57 cases demonstrated burst, minor compression, or wedge fractures
 - Only 5/57 were similar to NCAP full overlap crashes with engagement of both longitudinal rails
 - 44/57 cases involved engagement of 0 or 1 longitudinal rails
 - Crash pulse differences may be crucial to generating injurious loading conditions

Research Approach – Relevant Factors

Compression/burst more common than wedge fractures, suggesting a more pure compressive loading with adjacent endplates being nearly parallel

Seat Characterization

Occupant Environment
• Seat

Restraints

Knee bolster

Crash Characteristics

- Pulse
- Seat bottom was considered a relevant component for causation
- Commenced CIREN research project to better understand seat characteristics
 - Quasi-static response characterization DeRosia, *et al.* 2013 (ESV)
 - Response of forward translation of pelvis/thighs
 - Examination of bottom structure
 - Dynamic evaluation on sled
 - Restraint factors
 - Pulse effects full-frontal vs. pole impact
 - Dummy sensitivity to stiff vs. soft seats from quasi-static evaluation

DeRosia, J.J., Pintar, F.A., Halloway, D.E., Meyer, M.A., and Yoganandan, N. (2013) "Seat Pan Loading Differences Using a New Test Apparatus." International Technical Conference on the Enhanced Safety of Vehicles, Paper number 13-0102.

Occupant Environment

• Seat

Seat Characterization

- Enhanced CIREN seat inspection
 - New photography and variables for structural components
 - Pelvis support type (e.g. pan, spring basket)
 - Thigh support type (e.g. pan, bar)
 - Seat movement (e.g. manual, power)
 - Identification of damage to seat bottom

SAE INTERNATIONAL

Computational Modeling

- GHBMC modeling efforts
 - Basic configuration
 - Rigid seat
 - Simulated knee bolster
 - Belt pretensioner
 - Validation against PMHS sled tests
 - Limitations in model detail for lumbar spine
 - Focus on kinematics

Occupant Biomechanics

- Positioning
- Spinal alignment

Occupant Environment

- Restraints
- Knee bolster

Summary

- Increasing incidence of lower spine fracture in frontal crashes of restrained occupants
- CIREN case review identified crash, vehicle, occupant, and restraint factors
- Research underway
 - Laboratory and field investigation of seats
 - Effects of structural differences on occupant response
 - Parametric studies on sled and with computational modeling
 - Restraint and crash pulse factors
 - ATD response
 - Continued field data review