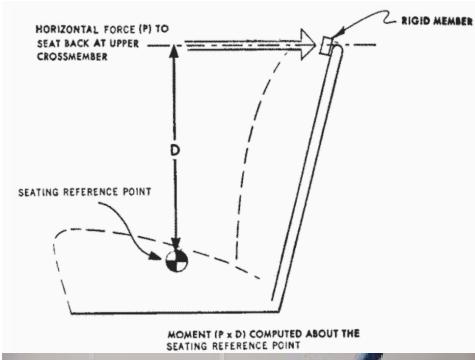


NHTSA Research on Seat Strength in Rear Impacts


Whitney Tatem, PhD
Lead Engineer, Vehicle Structures and Restraints

January 18, 2024

BIL Sec. 24204 – Motor Vehicle Seatback Safety Standards

- The Bipartisan Infrastructure Law (BIL) directed the Secretary of Transportation to "[n]ot later than 2 years after the date of enactment of this Act...issue an advanced notice of proposed rulemaking to update section 571.207 of title 49, Code of Federal Regulations."
- RIN 2127-AM53*, ANPRM imminent

 NHTSA expects to complete the rulemaking as soon as is practicable giving due consideration to public input throughout the rulemaking process.

FMVSS No. 207

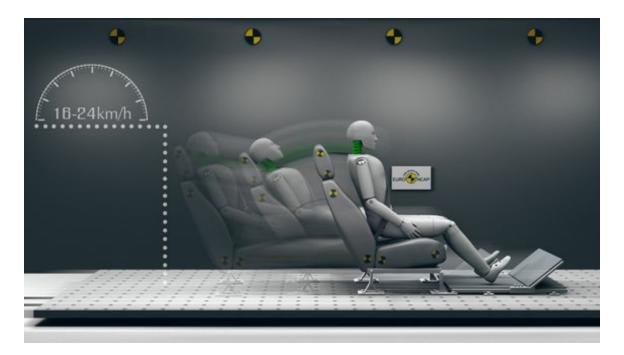
Establishes structural requirements for seats in passenger cars, multipurpose passenger vehicles, trucks designed to carry at least one person, and buses with a GVWR ≤ 10,000.

- Static rearward seat strength moment minimum of 3300 in-lbf or 373 N-m
- Other requirements on attachment of seat to vehicle, etc.

Modern seat strength ~2500 N-m*

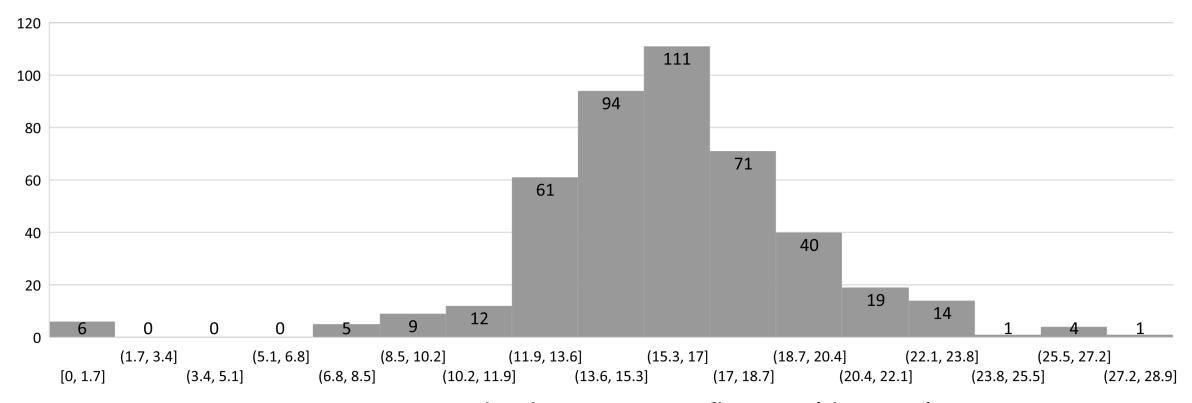
Seat strength requirement currently set by FMVSS 202a at ~650 N-m

*David C. Viano, Chantal S. Parenteau, Roger Burnett & Priya Prasad (2018) Occupant responses in conventional and ABTS seats in high-speed rear sled tests, Traffic Injury Prevention, 19:1, 54-59, DOI: 10.1080/15389588.2017.1347782


Research Areas

- Field Data Assessment
 - Define the current rear impact safety issue.
- Market Research
 - Better understand current seat construction and technologies.
- PMHS and ATD Testing
 - Explore occupant/ATD kinematics and injuries over a range of impact speeds.
- Injury Criteria Development
 - Critical for dynamic test procedures.
- Computational Modeling
 - Continue to improve advanced modeling resources and exercise in parametric studies.
- Cost Benefit Assessment

Field Data Assessment: Euro NCAP Dynamic Whiplash Test


 Readily available measurement of maximum seatback deflection in a controlled lab environment

Seats and head restraints are tested on a sled using the BioRID

Seatback Deflections Vary in a Controlled Test Environment

Euro NCAP Dynamic Whiplash Assessment Data, Vehicle Model Years 2009-2023

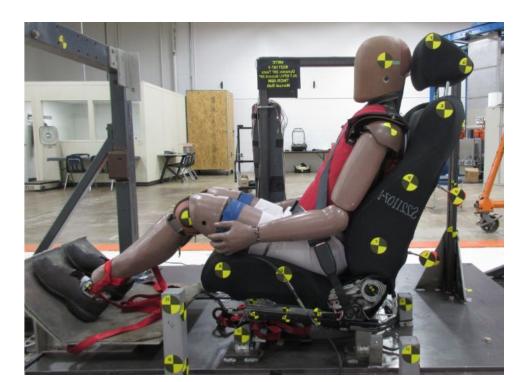
Maximum Seatback Dynamic Deflection (degrees)

Ongoing Research: Field Data Assessment

CIREN, CISS, SCI (e.g., EWRs)

- Observe:
 - If and how seats deform in real-world rear impacts
 - If newer model year vehicles appear to have 'better' seat construction
- Define the incidence of:
 - Occupant injuries in rear impacts
 - Seat deformation (and extent)
 - Rear passenger row intrusion from:
 - A deformed front row seat
 - Rear vehicle crush

Market Research: Seat Teardown Survey at VRTC


Completed physical teardowns of vehicle seats to:

- Determine seat areas that typically fail in rear impacts.
- Compare failure mechanisms/damage from diverse test modes.
- Assess the state of seats currently in the market including design trends such as:
 - Seatback frame types
 - Seat pan frame types
 - Pivot mechanisms
 - Etc.

Test Modes

207 Research Sled Tests

- ~ 15 G pulse
- BioRID or THOR-50M

FMVSS 301R Crash Tests

- ~ 15 G pulse
- Un-instrumented HIII-50M

Summary of Failure Mechanisms/Damage

All tested seats:

- Showed deformation to the seat pan
 - Often twisted about the x-axis and collapsed downward onto the seat rail assembly
- Were permanently more reclined about the y-axis
 - Often twisted about the z-axis as well

Majority of tested seats:

Exhibited damage to the seatback pivot mechanism


Ongoing Research: ATD and PMHS Sled Testing

- Exploratory high speed rear impact sled testing
 - 36 km/h Delta V
 - THOR-50M and BioRID-II ATD
 - 3 seat models tested thus far
 - Rearward rotation, ranging from 20° to 40°

- Matched pair PMHS testing
 - Looking at injuries
 - Generating biomechanical data

Computational Modeling: Existing Vehicle Seat FE Models

2014 Honda Accord

2019 Honda Odyssey

Ongoing Research: FE Modeling of Vehicle Seating

Task Order awarded to UVA, 3-year project

- Model and validate 3 new vehicle seats via sled tests
- Expected outcomes:
 - Define characteristics of an 'optimal' vehicle seat
 - Define tests methods to assess vehicle seat optimization for occupant protection
 - Define test requirements (i.e., ATD metrics, maximum seatback deformation limits, etc.)

Ongoing Research: Cost Analysis of Seatbacks and Head Restraints of the Front Seat of Light Vehicles

- Conduct a full teardown of 6 front vehicle seats (seat selections TBD)
- Consider diverse seat frame constructions (e.g., stamped vs. tubular steel)
- Catalogue seat features:
 - Bucket seats
 - Power adjustable seats
 - Heated seats
 - Ventilated seats
 - Massaging seats
 - Adjustable head restraint
 - In-seat audio system

- Catalogue seat materials:
 - Cloth
 - Synthetic leather
 - Real leather

Summary

- BIL requires that NHTSA issue an ANPRM to update FMVSS 207.
- Research is underway to investigate test approaches to improve seat designs to mitigate injuries in rear impacts.
 - Field data assessment of CIREN, CISS, SCIs, etc.
 - Ongoing market research such as seat teardown studies.
 - Ongoing ATD and PMHS sled testing in varying severities of rear impacts.
 - Additional computational modeling resources are being developed (3 new seat models expected).

Thank you!

Questions?

whitney.tatem@dot.gov