

Government/Industry Meeting

January 16–18, 2024 | Washington, DC

The Intersection of Engineering and Policy.

An Update on NHTSA's Ongoing Human Factors Research Activities Katie Lucaites, Ph.D., NHTSA

Driver Human Monitoring Machine System Interface

Hot topics

Hot topics

Propagation/Prevention

NHTSA Ongoing Research – DMS & HMI

	Distraction	 Distraction: Voice Command Interfaces Distraction: Portable Electronic Device Novel Human-Machine Interface (HMI) Designs Examination of How the Duration of Secondary Task Engagement Changes Over Time in Lower Levels (L0 – L2) of Driving Automation
\$ ^{\$\$} 5	Drowsiness	 Examining Distraction and Driver Monitoring Systems to Improve Driver Safety Applied Research to Assess Drowsiness Detection
	Alcohol Impairment	 Driver Alcohol Detection System for Safety (DADSS) Detection of Alcohol Impairment Signature in a Simulator Advanced Drunk Driving Prevention Technology Telltale Development
	L2 Driver Engagement	 Field Data Collection with Consumer Available Driver Support Systems Driver Monitoring Strategies (DMS) in SAE L2 Driver Support Systems

SAE International® Government/Industry Meeting

NHTSA Ongoing Research – DMS & HMI

	Distraction	 Distraction: Voice Command Interfaces Distraction: Portable Electronic Device Novel Human-Machine Interface (HMI) Designs Examination of How the Duration of Secondary Task Engagement Changes Over Time in Lower Levels (L0 – L2) of Driving Automation
s\$s	Drowsiness	 Examining Distraction and Driver Monitoring Systems to Improve Driver Safety Applied Research to Assess Drowsiness Detection
	Alcohol Impairment	 Driver Alcohol Detection System for Safety (DADSS) Detection of Alcohol Impairment Signature in a Simulator Advanced Drunk Driving Prevention Technology Telltale Development
	L2 Driver Engagement	 Field Data Collection with Consumer Available Driver Support Systems Driver Monitoring Strategies (DMS) in SAE L2 Driver Support Systems

SAE International® Government/Industry Meeting

- Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices (2013) provide recommendations and test procedures to interface developers to reduce distraction potential.
- In the years since then, we've seen:
 - Changes in **interface technology**: Increased use of touchscreens, voice control, smartphone integration, hardware/software improvements, etc.
 - Increased prevalence of ADAS technologies
 - New/improved **tools** to detect and measure distraction: Detection Response Task (DRT), EEG, etc.

Distraction Research

Voice Command Interfaces

Portable Electronic Device Integration

- What tasks are enabled by these HMIs?
- What are the impacts to cognitive workload, visual attention, & related psychometrics?
- What are the impacts to safety-relevant driver performance?

Examining Distraction and Driver Monitoring Systems to Improve Driver Safety

- What factors impact the ability of DMS to assess driver states?
 - Reliability to measure behavior
 - Construct validity to infer driver states
- Do reliability and construct validity change across different driver states that a DMS assesses?
- What is the impact of the DMS method, environmental factors?

Examining Distraction and Driver Monitoring Systems to Improve Driver Safety

- Simulator study
- Induce driver states
 - Distraction
 - Drowsiness
 - Distraction while drowsy
- Capture direct and indirect DMS data
- Analysis to identify reliability and validity of various sensors to detect driver states
- Emphasize equity and ecological validity
 - Environment, driver, and task levels

Applied Research to Assess Drowsiness Detection

		EUROPEAN NEW CAR ASSESSMENT PROGRAMME			
	Driver status	Requirements			
1	Drowsiness	Driver reaches (at least) KSS level >7			
	Microsleep Sleep	Eye closure duration <3s seconds Slowed reflexes, frequent nodding (or other behaviours declared by the manufacturer to correlate to microsleep) Eye closure >3 seconds			
		Driver Status Monitoring Dossier Guidance			
		Version 1.0.1			
		June 2023 TB 036			

- Objective: Research to inform development of thorough, evidencebased procedures, protocols, and criteria for the testing of DMS to identify drowsiness
 - Literature and practice review
 - Development and refinement of a drowsy driver DMS test

- Key research considerations:
 - Indicators of drowsiness and their associated safety risks
 - Measures and criteria to identify onset and progression of drowsiness
 - Minimum level of drowsiness for mitigation/intervention
 - Methods to induce, replicate, synthesize drowsiness
 - Range of driver characteristics and environment conditions for testing
 - Drowsiness detection performance criteria

Field Data Collection with Consumer Available Driver Support Systems

- Collect long-term naturalistic data that examines how and when drivers use L2 systems
- 144 Participants across 3 sites, up to 18 months data collection period

Objectives

- Equitable data access that protects participants
- Representative selection of L2 systems
- Diverse set of drivers with demographics and key self-report data
- Continuous, longitudinal assessment of L2-related driver behavior
- Continuous time-series data + comprehensive data dictionaries
- Standardized vehicle and environment factors
- Enriched data through analysis, external data fusion, data curation

NHTSA Ongoing Research – DMS & HMI

	Distraction	 Distraction: Voice Command Interfaces Distraction: Portable Electronic Device Novel Human-Machine Interface (HMI) Designs Examination of How the Duration of Secondary Task Engagement Changes Over Time in Lower Levels (L0 – L2) of Driving Automation
s\$s	Drowsiness	 Examining Distraction and Driver Monitoring Systems to Improve Driver Safety Applied Research to Assess Drowsiness Detection
	Alcohol Impairment	 Driver Alcohol Detection System for Safety (DADSS) Detection of Alcohol Impairment Signature in a Simulator Advanced Drunk Driving Prevention Technology Telltale Development
	L2 Driver Engagement	 Field Data Collection with Consumer Available Driver Support Systems Driver Monitoring Strategies (DMS) in SAE L2 Driver Support Systems

SAE International® Government/Industry Meeting

Contact Info

- Thank you
 - Katie Lucaites
 - National Highway Traffic Safety Administration
 - Kathryn.Lucaites@dot.gov