

Examining the Relationship Between Quasi-Static Testing and Dynamic Crash Response of Heavy Truck Rear Impact Guards through Simulation

Alex J. Kalmar-Gonzalo, Berkan Guleyupoglu, Derek A. Jones

SAE Government-Industry Meeting, 2024

Elemance Introduction

5,788 deaths in traffic crashes involving large trucks in USA 2021¹

- Increased 17% compared to 2020
- Account for 13% of all motor vehicle traffic fatalities
- 72% of these traffic fatalities were occupants of vehicles other than the large truck Between 2008-2009, 977 fatalities from rear-end strikes²

¹FARS 2021 Annual Report ²DOT HS 811 725, March 2023

Elemance Introduction: History of Testing

Elemance **Introduction: Testing Methodologies**

Quasi-Static Loading per 2022 Final Rule:

Population	Force	Energy		
Regulation	P1	P2	UDL	Absorption
FMVSS No. 223 (2022)	50 kN	50 kN	350 kN	20 kJ in UDL

Dynamic Testing per IIHS Toughguard award:

FULL WIDTH The car crashes into the center of the truck's rear.

50 PERCENT OVERLAP Half of the car's width overlaps the rear of the truck.

30 PERCENT OVERLAP Thirty percent of the car's width overlaps the rear of the truck. Elemance Full Project Aims

<u>Study Goal</u>: Examine the relationship between quasi-static rear impact guard requirements and dynamic crash structural performance, including occupant response

- <u>Aim 1:</u> Develop Model of 3 Rear Impact Guards and Validate Against Quasi-Static Testing
- <u>Aim 2:</u> Modify guard models to minimally pass FMVSS regulations. Evaluate performance in simulated full crash tests. Strengthen guards to prevent PCI in 30% overlap and re-test in quasi-static conditions
- <u>Aim 3:</u> Investigate the effectiveness of guards at higher velocity crash modes

Elemance Full Project Aims

<u>Study Goal</u>: Examine the relationship between quasi-static rear impact guard requirements and dynamic crash structural performance, including occupant response

- <u>Aim 1:</u> Develop Model of 3 Rear Impact Guards and Validate Against Quasi-Static Testing
- <u>Aim 2:</u> Modify guard models to minimally pass FMVSS regulations. Evaluate performance in simulated full crash tests. Strengthen guards to prevent PCI in 30% overlap and re-test in quasi-static conditions
- <u>Aim 3:</u> Investigate the effectiveness of guards at higher velocity crash modes

Elemance Aim 1 Methods: Structure Procurement

Selection Criteria:

- Meets FMVSS 223 and report is available
- Has been tested in IIHS full vehicle crash tests
- Prevalent on US roadways
- Still available new from manufacturer

Kalmar-Gonzalo, IRCOBI 2023

Elemance Aim 1 Methods: Structure Procurement

Selection Criteria:

- Meets FMVSS 223 and report is available
- Has been tested in IIHS full vehicle crash tests
- Prevalent on US roadways
- Still available new from manufacturer

Elemance Aim 1 Results

Elemance Aim 1 Results

Elemance Full Project Aims

<u>Study Goal</u>: Examine the relationship between quasi-static rear impact guard requirements and dynamic crash structural performance, including occupant response

- <u>Aim 1:</u> Develop Model of 3 Rear Impact Guards and Validate Against Quasi-Static Testing
- <u>Aim 2:</u> Modify guard models to minimally pass FMVSS regulations. Evaluate performance in simulated full crash tests. Strengthen guards to prevent PCI in 30% overlap and re-test in quasi-static conditions
- <u>Aim 3:</u> Investigate the effectiveness of guards at higher velocity crash modes

Elemance Aim 2: Methods Overview

Elemance Aim 2: Methods Overview

Elemance Aim 2.1: Validation of Guards + Truck Models @ 35 mph; Wabash

30% Overlap

50% Overlap

Full Overlap: Physical vs Simulation

Full Overlap

Elemance Aim 2.1: Validation of Guards + Truck Models @ 35 mph; Manac

30% Overlap

50% Overlap

44

Full Overlap: Physical vs Simulation

Full Overlap

Elemance Aim 2.1: Validation of Guards + Truck Models @ 35 mph; Great Dane

30% Overlap

50% Overlap

Full Overlap: Physical vs Simulation

Full Overlap

Elemance Aim 2: Methods Overview

FMVSS No. 223 (2022):

- P1, P2 must resist 50 kN before 125 mm
- UDL must resist 350 kN before 125mm & absorb 20 kJ of energy through plastic deformation
- Final Ground Clearance \leq 22 in

Wabash	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	Mass (kg)
Baseline					
Minimally Compliant					
FMVSS Req.	≥50	≥50	≥350	≥20	N/A

★ Measured ◆ Tuned

★ Measured ◆ Tuned

× Measured ◆ Tuned

What is the minimum thickness that still passes FMVSS No. 223?

★ Measured ◆ Tuned

What is the minimum thickness that still passes FMVSS No. 223?

Wabash	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	Mass (kg)
Baseline	120.5	149.4	441.7	36.6	69.4
Minimally Compliant	67.2	77.0	350.4	29.4	52.5
FMVSS Req.	≥50	≥50	≥350	≥20	N/A

Elemance Aim 2: Methods Overview

Elemance Aim 2.3: Assess Dynamic Response with Minimally Compliant Guards - Wabash

<u>Baseline</u> **Minimally Compliant** <u>FW</u> <u>50%</u> <u>30%</u>

	Dynamic Response PCI Prevented?				
Wabash	FW	50%	30%		
Baseline	Yes	Yes	No		
Minimally Compliant	Yes	Yes	No		

Elemance Aim 2.3: Assess Dynamic Response with Minimally Compliant Guards - Manac

	Dynamic Response PCI Prevented?					
Manac	FW	50%	30%			
Baseline	Yes	Yes	Yes			
Minimally Compliant	Yes	Yes	Yes			

Elemance Aim 2.3: Assess Dynamic Response with Minimally Compliant Guards – Great Dane

	Dynamic Response PCI Prevented?				
Great Dane	FW	50%	30%		
Baseline	Yes	Yes	No		
Minimally Compliant	Yes	Yes	No		

✓ PCI Prevented

PCI Not Prevented

Guard Model		PCI Dy	namic Res	sponse	Quasi-Static Response				
		FW	50%	30%	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	Mass (kg)
U	Baseline	✓	✓	✓	172.5	83.3	356.2	36.8	84.8
lana	Minimally Compliant	~	✓ ✓		157.1		351.9	33.3	
2	Strengthened-Midsize			~		52.5			75.7
ے	Baseline	✓	✓	×	135.8	125.4	394.7	32.1	54.4
'abas	Minimally Compliant	✓	✓	×	79.6	68.5	350.4	25.6	38.9
M	Strengthened– Midsize	\checkmark	\checkmark	\checkmark					→ ?
ane	Baseline	✓	✓	×	120.5	149.4	441.7	36.6	69.4
Great Da	Minimally Compliant	✓	✓	×	67.2	77.0	350.4	29.4	52.5
	Strengthened– Midsize	\checkmark	\checkmark	\checkmark					→ ?
	FMVSS No. 223 Requi	rement			≥50	≥50	≥350	≥20	N/A

✓ PCI Prevented

PCI Not Prevented

Guard Model		PCI Dy	PCI Dynamic Response		Quasi-Static Response				
		FW	50%	30%	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	Mass (kg)
U	Baseline	✓	✓	✓	172.5	83.3	356.2	36.8	84.8
lana	Minimally Compliant		× ×	× ×	✓ 157.1				
2	Strengthened-Midsize	~				52.5	351.9	33.3	/5./
	Baseline	✓	\checkmark	×	135.8	125.4	394.7	32.1	54.4
'abas	Minimally Compliant	✓	✓	×	79.6	68.5	350.4	25.6	38.9
3	Strengthened– Midsize								
ane	Baseline	✓	\checkmark	×	120.5	149.4	441.7	36.6	69.4
Great Da	Minimally Compliant	✓	✓	×	67.2	77.0	350.4	29.4	52.5
	Strengthened– Midsize								
	FMVSS No. 223 Requi	rement			≥50	≥50	≥350	≥20	N/A

Elemance Aim 2: Methods Overview

Elemance Aim 2.4: Strengthen Guards to prevent PCI in 30% Overlap @ 35 mph

Strengthening Guards:

- Identified parts that were carrying majority of load
- Increase thicknesses of parts in build-simulate-build iterative manner
- <u>Goal:</u> Find minimum thicknesses that still prevent PCI

Elemance Aim 2.4: Strengthen Guards to prevent PCI in 30% Overlap @ 35 mph – Wabash/Great Dane

Elemance Aim 2: Methods Overview

Elemance Aim 2.5: Re-Test Strengthened Guards in FMVSS 223: Wabash

Elemance Aim 2.5: Re-Test Strengthened Guards in FMVSS 223: Great Dane

Elemance Aim 2: Discussion

P1 Force & 30% PCI Prevention

✓ PCI Prevented

PCI Not Prevented

Guard Model		PCI Dynamic Response		Quasi-Static Response						
		FW	50%	30%	P1 Force (kN)	P2 Force (kN)	UDL Force (kN)	UDL Energy (kJ)	Mass (kg)	
U	Baseline	✓	✓	✓	172.5	83.3	356.2	36.8	84.8	
lana	Minimally Compliant									
2	Strengthened-Midsize	-	V V	•	V V	157.1	52.5	351.9	33.3	/5./
ے	Baseline	✓	\checkmark	×	135.8	125.4	394.7	32.1	54.4	
abas	Minimally Compliant	✓	✓	×	79.6	68.5	350.4	25.6	38.9	
3	Strengthened– Midsize	✓	✓	✓	295.7	243.8	928.1	68.0	75.8	
ane	Baseline	✓	\checkmark	×	120.5	149.4	441.7	36.6	69.4	
Great Da	Minimally Compliant	✓	✓	×	67.2	77.0	350.4	29.4	52.5	
	Strengthened– Midsize	√	✓	✓	192.1	277.3	495.4	42.8	101.1	
FMVSS No. 223 Requirement					≥50	≥50	≥350	≥20	N/A	

Elemance Aim 2: Discussion

Elemance Aim 2: Discussion

Guard	H1	W1	W2
Manac	450	910	290
Wabash	525	690	504
Great Dane	575	650	556

W2 vs. Horizontal Member Thickness for PCI 30% Prevention

- Bolt connections not explicitly modeled. Instead, rigid constraints at bolt holes
- Trailer model generic, not modified to replicate each manufacturer's trailer
- Trailer ride height not adjusted between guards
- Preliminary validation only possible between physical Chevrolet Malibu and simulation Honda Accord

- PCI prevented in both baseline and minimally compliant conditions, 50% and Full Width 35 mph cases across all models
- 30% Overlap PCI prevention is particularly challenging; selectively increasing guard metal thicknesses can prevent PCI, but comes with large mass increases
- As width between the uprights decreases, required horizontal member strength increases

Thank you!

NHTSA Contract Number: 693JJ921D000042

Models freely available at Elemance.com

Elemance Aim 2: Modify Guards to just pass FMVSS 223 – Great Dane

Minimally Compliant

Elemance Aim 2: Modify Guards to just pass FMVSS 223 – Wabash

Baseline Minimally Compliant

Elemance Aim 2: Modify Guards to just pass FMVSS 223 – Manac

Elemance Manac Model Summary Slide

Elemance Wabash Model Summary Slide

Elemance Great Dane Model Summary Slide

Elemance Aim 1 Methods: Mesh CAD

- Meshed in Beta ANSA:
 - Primarily quad shell elements
 - Target element length 10mm
 - Welds modeled as node-to-node connections or tied contacts where not possible
 - Thicknesses assigned in section cards according to physical measurements

Elemance Aim 1 Methods: Mesh CAD

Element Type	Great Dane	Wabash	Manac
Quad	18,280 (99.3%)	15,868 (99.8%)	21,224 (99.5%)
Tria	134 (0.3%)	30 (0.2%)	114 (0.5%)
Total	18,414	15,898	21,338

Elemance Aim 1 Methods: Material Model Development

Wabash ASTM E8

Minimize y:

$$y = \frac{P_{UDL} - 350 \, kN}{350 \, kN} + \frac{P_{P2} - 50 \, kN}{50 \, kN} + \frac{P_{P1} - 50 \, kN}{50 \, kN} + \frac{U_{UDL} - 20 \, kJ}{20 \, kJ} + 0.25 \frac{M_{Sim}}{M_0}$$

Where:

- P_{UDL} , P_{P2} , and P_{P1} are the peak force from the UDL, P2, and P1 test locations
- U_{UDL} is the plastic energy absorbed during the UDL test
- M_{Sim} and M_0 are the current bumper mass and the baseline bumper mass, respectively

Constraints:

- $P_{UDL} \ge 350 \text{ kN}$
- $U_{UDL} \ge 20 \text{ kJ}$
- P_{P2} , $P_{P1} \ge 50 \text{ kN}$
- Ground Clearance \leq 22 in