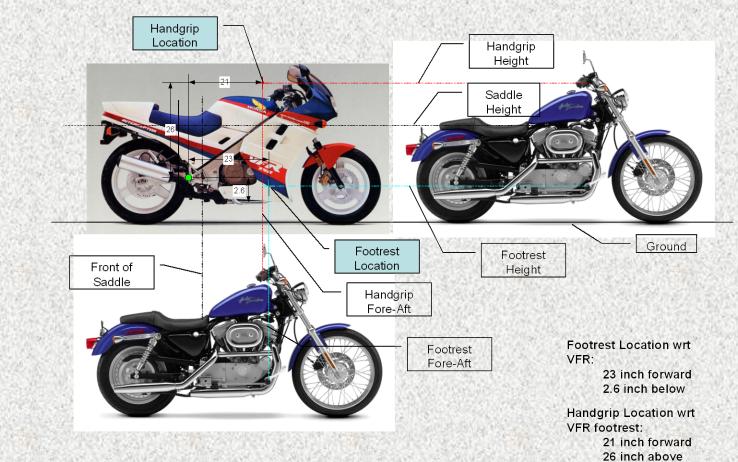
# Simulator Study of Motor yele Rider Braking Behavior

#### 2010 Government/Industry Meeting Dr. Paul Rau

#### Objectives

The objective of this study is to gain a better understanding of how non-expert motorcycle riders use their brakes in various emergency stopping and maneuvering situations.


- Which brakes do riders use in an emergency front, rear, or both?
- Does braking behavior predict whether riders crash or not?
- Do rider factors of age, experience, motorcycle preference, and rider training influence braking behavior?

### **Experimental Design**

- The Dynamic Research Inc. (DRI) driving simulator is a dynamically realistic, moving base, "driver-in-the-loop" research device.
- 68 male subjects completed two 30 minute runs, each involving 14 braking events categorized as traffic (braking not required), normal braking (.1 - .2g), urgent braking (.3 - .5g), or emergency braking (.55 - .7g).
- Two motorcycle frame types were used, i.e. sport-touring and cruiser.
- 39 km ride included a suburban portion (intersections every 760 m, posted speed 40 mph) and rural portion (intersections every 3050 m, posted speed 65 mph).

#### **Motorcycle Frame Types**

#### 1987 Honda VFR700F and 2008 Harley-Davidson Sportster XL883 Custom



Scale: 2.75 in = 58 in

#### Motorcycle Frame Types



#### **Imagery: Suburban Intersection**









#### **Simulator Vehicle Measures**

- Rider steer torque and steer angle inputs
- Rider hand lever and foot pedal brake force inputs
- Corresponding front and rear wheel brake torques
- Corresponding front and rear longitudinal slip values
- Other hand and foot control inputs, such as clutch and shift lever
- Accelerator position
- Motorcycle pitch, roll, and yaw angles and angular rates
- Path angle
- Motorcycle lateral and longitudinal acceleration
- Forward speed
- Stopping distance
- Lateral lane deviation
- Position and motion of obstacle and other interacting vehicles
- Video recording of rider head, arms, and legs

## **Rider Variables**

- Time delay between the initial visual stimulus and the rider's initial control response (braking RT),
- Rise time (slope) of rider's initial control response,
- Peak control force of rider's initial control response,
- Peak control force overall,
- Duration of control input (time from initial control response to end of braking maneuver; either point at which control is released or speed goes to zero, whichever comes first),
- Mean control force over duration of control input,
- Mean square deviation of control force about the mean control force over the duration of control input,
- Energy spectrum (FFT) of the control input waveform providing a center frequency, spectral width, and perhaps a "spectral shape" metric.

## **Rider Principal Components**

#### **Rider Factors**

Miles Ridden in 2008 Group Riding Miles in 2008 Avg. Miles / Year 2006-2008 Age Total Years Riding **Skill Rating Ride Frequency Rating Commuting Miles in 2008** Aggressiveness Rating

#### **Component**

| 1    | 2    | 3    |
|------|------|------|
| .969 | 042  | .182 |
| .967 | 083  | 096  |
| .778 | .128 | .515 |
| 106  | .946 | 073  |
| .035 | .945 | 100  |
| .023 | .394 | .305 |
| .175 | 009  | .824 |
| .018 | 015  | .823 |
| .202 | 199  | .242 |

## Simulator Study Findings

- In emergencies most riders used a combination of front and rear brakes. No rider used only the rear brake.
- In general, riders used a front brake bias. The remaining few riders mostly used the front brake only.
- The speed reduction at 2 seconds is a better predictor of collision than the total speed reduction; initial braking strongly determines the outcome (95% correct, R<sup>2</sup>=.859).
- As more force is developed in either lateral or longitudinal axes there is a reduced capacity to produce force in the other.
- There were overall weak correlations between collision probability and rider factors. Rider Aggressiveness Rating was significant, but the correlation was low.

## Simulator Study Conclusions

- Cruiser riders and sport touring riders have similar braking behavior, and neither is more or less likely to use only the rear brake in an emergency.
- Rider factors such as age, years experience, recent riding experience, etc. are not good indicators of probability of an in-path collision.